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Abstract—Current approaches to summarising large arrays
of data for presentation and communication mostly comprise
reporting means with, e.g., bar-charts. These methods are
well-suited for unimodal, ideally normally- or near-normally
distributed data, but are misleading for long-tail distributions
that comprise most of the Big Data. We propose a succinct
visualisation format, parallel in simplicity to bar-charts, that
is suitable for communicating the gist of long-tail distributions,
and show its efficiency empirically.
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I. INTRODUCTION

The aim of explanatory (as contrasted to exploratory)
visualisation is to efficiently communicate evidence, in order
to enable fast, yet accurate, judgement, sense- and decision-
making. Often that means summarising large data sets in a
succinct form — typically, by presenting the central tendency.
The central tendency is usually approximated with arithmetic
mean, with other metrics, such as median, tri-mean or mid-
hinge used more rarely. The central tendency is used in a
variety of use-cases: to compare several datasets in a bar- or
pie-chart; to see changes in data over time on a time-line;
etc.

When a more complete, yet still succinct, description is
required, a measure of spread is added to a central tendency,
such as the standard deviation, standard error, or an inter-
quartile range. The spread is then visualised as error-bars,
confidence intervals, or used in compound visualisations
such as a box-and-whiskers plot [1].

More elaborate visualisations show distributions as they
are — as histograms, PDF, CDF or CCDF plots, and the
relatively recent violin plots [2]. These, however, are difficult
to communicate to laymen, and, perhaps more importantly,
hold too much information for quick analysis — even by
experts.

A major underlying assumption for using a central ten-
dency is that the dataset does actually have one. In other
words, it is assumed that data is drawn from a distribution
that has a single mode, and tapers out around that mode —
in short, that it is more-or-less bell-curve-shaped, ideally —
normally distributed. It then follows that: that the majority of
the measurements do not fall far from the central tendency;
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that the central tendency is the most common value; that
the range of the data is symmetrical around it, and probably
does not spread too far from it efc.. It does not matter which
measure of a central tendency is used because in a normal
distribution they are all equal. Even if the data does not
exactly fit a normal distribution, all these assumptions hold
to a large extent.

Recently, however, more and more real data sets are
analysed that do not satisfy the assumption of normality
at all. Most of the data regarding social networks, natural
language, online behaviour — most of the so-called Big
Data — are not normally distributed. Instead, these data
have highly skewed distribution that are truncated on one
side and taper to a long heavy tail to the other side. The
underlying theoretical distributions for many of these are
either truncated power-law [3] or log-normal’ [4].

As an example, we can compare a normally distributed
variable: human height, and a power-law distributed vari-
able: town size. The factoid that an average height of a
US male is 180cm is useful, because it represents a central
tendency of a normally-distributed data. In contrast, the
factoid that an average population of a US town is 8.2k is
useless, because it describes a power-law distributed dataset
that has no central tendency.

Big Data are increasingly used for sense- and decision-
making, often by summarisation and visualisation of the
arithmetic mean. A common suggestion to use median or
tri-mean instead of the mean [5] does not address the heart
of the matter — that these data can not be summarised by
any measure of central tendency, simply because they do
not have one. Thus, while the value of arithmetic mean
or tri-mean etc. can be calculated, it would not have much
meaning.

In this study, we aim instead to develop a visualisation
format, similar in simplicity to common bar-charts, that
would be specifically suited for long-tail distributed data.
Our requirements are:

« case of calculation and rendering, especially for large

!t is often non-trivial to distinguish between power-law and log-normally
distributed data, especially from a noisy and/or low-resolution sample.



Figure 1.
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Different summary visualisations of the same five datasets (10k items each). Visualisations (left to right): mean; median; stackchart; and balalaika

plot. Datasets (left to right): A and B: two samples from a power-law distribution with offset 1 and slope 2.5; C: offset 1.5; D: slope 2; E: log-normal

distribution with mean 1.5 and standard deviation 0.5.

datasets;
o case of comprehension in common use-cases such as
outlier detection, comparison, and trend estimation;
« suitability to a large family of general long-tail distri-
butions, and tolerance to noisy data.
Notably, comprehensive representation of the dataset is not
a requirement; instead, we aim for summarising just the gist
of it — just as a bar-chart of means represents the gist of
normally-distributed datasets.

II. CHOICE OF METRIC

The first step of designing a visualisation is to choose a
suitable succinct numerical representation of a dataset.

Just as normal distributions can be fully described by
two numbers - mean and standard deviation, power-law
distributions can be described by slope and offset of the
linear probability density function on a log-log scale (the
log-log linearity of the PDF is the definition of a power-law
distribution).

The offset is simply the lower bound of power-law be-
haviour: the beginning of the long tail. The meaning of slope
is difficult to communicate to non-statisticians; however,
its reciprocal, ranging from O to 1, has a clear meaning
of ’tail-heaviness’ — the closer it is to 1 the more values
would be found in the long tail. Commonly found power-
law distributions have a slope of 2 to 3, and therefore a
tail-heaviness of 0.3 to 0.5.

There are, however, problems with these metrics that
are not as easy to address. First, the fit is complex to
calculate, especially for high offsets; and second, the slope
is only really relevant to pure power-law distributions and
is misleading for long-tail distributions that are not linear
on a log-log scale. That makes summarising a long-tail
distribution by its ’tail-heaviness’ useful only in the limited
situations of a priori known power-law distribution.

Likewise, log-normal distributions can be fully charac-
terised by a geometric mean, also know as log-average:
en i inTi | that represents the central tendency of the under-
lying normal distribution. While it is easy to calculate, it is
only really meaningful for purely, or nearly so, log-normal
distributions.

One relatively widely-known metric of long-tail distri-
bution is the Gini index, or the index of inequality. It is
general, not assuming any specific distribution, but it is very
computationally heavy to calculate for large samples. It is
also, essentially, a secondary statistic, based on percentages,
that disregards the actual values of the data.

With all this in mind, we have decided to use deciles
as our metric. Deciles, especially the median (5" decile)
and the Pareto point (8 decile) are already widely used in
reporting long-tail distributions. They are easy to compute,
and do not assume any specific distribution shape.

IIT. VISUALISATION DESIGN

The design process of a new visualisation is by its nature
less objective and harder to formalise than a choice of an
appropriate metric. In this section we will attempt to outline
and in some measure justify the design choices made, given
the multitude of options.

Stackplot (fig. 1C) was our fist attempt at representing
long-tail data using deciles. We followed the idea of a violin
plot as a starting point, aiming to show a rough outline of
data distribution. A stackplot is a stack of rectangles, with
each rectangle representing a decile of the data. Thus the
height and positioning of i rectangle is defined by deciles
¢ and ¢+ 1; the width is scaled so that all rectangles in a stack
are of equal area, with the widest ones in every stack being
of the same width. Importantly, the last decile, the longest
tail, is not shown: if it were, its height would obscure the rest
of the plot without contributing any meaningful information
except for the position of the largest datum in the long tail
- which is spurious.

While useful, and much easier to calculate and render than
a violin plot, a stackplot still has too much detail compared
to, for instance, bar-chart. Therefore, our second design, the
balalaika chart (fig. 1D), focused on the deciles that best
describe the long-tail distribution: 0" (minimal value), 1%
(widest point), 5% (median, shown as a plus sign in the
middle), and lastly 8" and 9™ (the tip of the body and the
tail). The exact width calculations were also discarded in
favour of simplicity.
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Figure 2. Accuracy of outlier detection in various chart types. Left/blue
bars: offset outlier; Right/red bars: slope outlier; chance level at 20%.

IV. EXPERIMENT

To validate the design, we have run a short experiment
using Amazon Mechanical Turk (MTurk) as the platform.
Four visualisation formats were compared in terms of outlier
detection accuracy: whether they allowed to reliably detect
a sample drawn from a similar, but different distribution.
Two visualisation formats were well-established: barcharts
of either mean or median; two were new: the stackchart and
the balalaika plot. Only pure power-law distributions were
used for the sake of simplicity; experiments using other log-
normal and real-life distributions are also planned.

A. Method

1) Stimuli: For each stimulus, four samples of 10k values
were randomly generated. Three were drawn from a baseline
power-law distribution, and one from either baseline (in 20%
of the cases) or a differing one.

The baseline distribution started at 1 and had a slope
of 1/0.4. The outlier distribution differed in either slope:
1/(0.4 £ 0.005) or start: 1 4 0.1. These values were deter-
mined in a pilot study to be discernible but not trivially so.
A rigorous study of a JND in either parameter is planned,
but was out of scope of this study.

A combination of four outlier types (two slope and two
start), and five outlier target positionings (A, B, C, D or
none) produced 20 datasets. Each was visualised using four
chart types, resulting in 80 stimuli (see fig. 1 for sample
stimuli).

2) Procedure: Participants could rate any number of stim-
uli, but could only rate each stimulus once. Before seeing the
stimulus, they were shown the following instruction: ”You
will see a barchart, or something similar to a barchart, with
four items labelled A, B, C and D. Your task is to say
which one of the items is different from the rest. If there
are none or more than one, select the "None’ option. Should
take 1 second.” After that the stimulus image was presented
with the above options as radio buttons. Response time was
recorded but not restricted.

B. Results

Each stimulus was seen by 30 MTurk workers. The
accuracy results (Figure 2) show near-chance performance
for barcharts of means. Barcharts of medians perform well
for offset outliers, but are near-chance for slope outliers. In
contrast, both novel designs perform similarly well for either
type of target outlier. Response time varied from 0.7 seconds
to more than two hours, and was not analysed further.

V. DISCUSSION

While definitely not optimal, both our designs outperform
commonly used barcharts of either means or medians. They,
especially the balalaika plot, are easy to calculate, render,
and, most importantly, comprehend.
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Balalaika plot of a real long-tail distributed data. Blue line at

For example, fig. 3 shows a real-life sample of noisy, long-
tail distributed data: daily page view times in one of Yahoo
properties. The property attracts millions of daily views; of
these, view times of 100k pages per day were randomly
sampled for 10 days and visualised using both balalaika
chart and arithmetic mean. It is clear from the balalaika plot
that the two dips in mean, highlighted as A and B, are in
fact due to different phenomena: A is a decrease in long tail
extreme outliers, while B is a decrease in body.

To conclude, we argue that, while better design and
more studies are of course necessary, these visualisation
formats can already be used in real-life analysis of long-
tail distributions.
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